https://orcid.org/0000-0003-4897-9089
3.1578947368421052631579
Pi is a representation of the circle in the mathematically integer that allows us to create the radius of a circle with digits.
How do I create "Pi"
You begin with a simple point of reference in space. This space is the volume of "Pi" in calculations you would identify each integral point as a unit of this total "Pi".
This means you being at your fixed point and add the radial curvature of "Pi" by the total degree of possible radius. Total is 360 degree. Your number is based on a integer that represents this denomination. The actually number 3.14 xxxx is useless. The construct that is "Pi" is not.
So what about using this "Pi"
Let's go ahead and put "Pi" in action.
E=McPi
Where pi is the volume of space defined by the radial curve of the volume.
This allows you to mathematically define this space moving at the speed of light C as a volume(pi) of density that weighs X(mass or density) amount.
point of reference on the radius is 0 this reference is replaced by 360 and the radial curve never ends.
0=0
1=pi x 1 =3.14
2=pi x 2 =6.28
The total of "Pi" is 360
Why is "Square" used instead of "Pi"... Because it simpler to quantify 4 points of reference of a square then 114 even segmentation's of radial curve.
What does this mean?
This means we can calculate mathematically even odd shaped objects using "Pi" as we adjust the radial curve integer amount to match the objects volume. We can also use Divisions of 114.
Let go ahead and do this.
0=0
1=3.14
2=2.14
3=3.14
1 divided by 360 = 0.0027 divide 114 = 3.15789473684210526315
That is "Pi" 360
360 divided by 114 = 3.15789473684210526315
Now adding this back up to 360: 3.1578947368421052631579 and you get:
114 x 3.1578947368421052631579 = 360 - perfect curve.
How do I square "Pi"?
We have 9cm circle or sphere.
9 x 9 = 81 x 3.15789473684210526 = 255.78947368421052606cm squared
How to Square a Circle.
4.5 cm circle
4.5 x 2 = 9 x 9 = 81 square cm
So where did the number 3 come from?
360 x 3 = 1080
360 divided by 1080 = 3
3.14 divided by 2 will extract pi which tells us at the end of 3.149 we will end at 15789473684210525438596491228070176 so 3.149xxx15789473684210525438596491228070176
If you put 3.14 into a calculator and divide it you begin from 157.
So lets find out how we get 114.
360 divided by 3.14159265359 = 114.591559026
Lets start with Egypt at 3.16 now how did they get this number?
1 divided by 360 = .00277777777 x114 = .31666666666
Now when you calculate that backwards its over 360 its 361. (calculator flaw)
So 3.16 is close but not quite. We don't want irrational (333666777999) numbers here so lets go backward and verify it.
3.16 x 114 = 360.24 <--- ooo we are so close but not quite. the .24 remains we regress again.
3.15 x 114 =359.1 <--- we went to low.
3.155 x 114 = 359.67 <--- ooo ok so its higher
3.1559 x 114 = 359.7726 <--- almost but not there yet.
3.156 x 114 = 359.784 <---- bit more
3.157 x 114=359.898 <---we are so close!
3.1577 x 114 = 359.9778 <--oh not yet.
You continue this process till you reach 3.15789473684210526
and you achieve 360. True Pi = 3.15789473684210526
Lets do this all together:
1 divided by 360 is .0027777777 x 114 = 0.31666666666
0.31666666666 x 360 = 114 divided by 360 - 0.31666666666
I think this is what Egypt used to identify the 3.16 at 114 marker.
So 3.16 x 114 =360.24
360.2400 divided by 114 = 3.16 when entered into a calculator.
So math says we remove this from the remainder through even segmentation.
2400 divided by 114 =0.002105263157894737
subtract from 3.16 and you get 3.15789473684210526
Repeating this process you get: 3.15789473684210525438596491228070176
This process gives you the extended digits that continues to refine the digit to the exact decimal.
360 x 114 = 41040
41040 x 315789473684210525438596491228070176 = 12,959,999,999,999,999,964,000,000,000,000,000,023,040
which you then do this:
12,959,999,999,999,999,964,000,000,000,000,000,023,040 x 12,959,999,999,999,999,964,000,000,000,000,000,023,040 = 1
Which says you have converted the radial curve into a rational digit.
1 = 360 = 41040 =315789473684210525438596491228070176 = 1
This can calculate Pi to beyond 10 to the 130 power beyond a googolplex and beyond skewers.
When we divide into 3.14
360 divided by 3.14 we get this
114.6496815286624203821656050955414012738853503184713375796178343949044585987261146496815286624203821656050955 and then it repeats.
So we identify that 3.14 also is a member of 114.
Giving us the true sphere of 360 divided by 114 = pi
Now the radius itself is defined by the curve being perfectly even. This creates Pi.
Where 3.14 uses 360 divided by 114 = 2.75 and begins the calculation for the radius from the .75 so number that is divided is .25 curve ratio. Where 3.15 begins that curve ratio at .1
Where we see 114.659 from 3.14
We see 114.28 from 3.15
Where we define the more accurate curve.
We can verify this again when we use the 90 degree angle from 360 divided by 2 = 180 divided by 2 again is 90. When you segment 90 which is a division of 3 (current pi is extracted from 3 square) where you get 28.5 and when you divide 90 by 28.5 you get Pi at 3.157894736842105264.
Why is 3.14 improper to begin with?
accuracy
3.14 using the divisional factor of 3 and 3.15 uses the divisional factor of 2.
The method with 3.14 uses 3x3 to extract the variable which is the curve. So this curve is doing this:
360 divided by 3 = 120 divided by 3 =40 divided by 3 = 13.3 where if you divide back into 13.3 it gives you 39.9. Then x 3 again 119.7 and we see a larger increase. Now this must be removed to gain the radial curve, when you times it back by 3 you get. 359.1 where you then reduce this and solve by adding the remainder. Which solves for 3. Now 3.591 is divisible by 3. Where it gives you 3.3 and when you divide again you get .027. 1 divide by 360 =.0027 so 36 = .027. So we return to find the extra and adjusting our number for true Pi.
.027 divided by 114 = 0.0023684210526315789473684210526
Both methods work but 1 is refined. To the exact digit using segmentation through divisional fractions. of 360. While 359.1 is close. 359.9 is closer.
----
So whats wrong with the area?
It matters on how you measure it. When you measure the area your measuring from the outside in. Or in to out. Pi itself is perfect. Mathematically. What is happening is exponential growth of the number itself. from 359.1 to 359.9 you lose .8 area if you start your radial curve at 3.14 where as you do not lose this area in calculation if you use the curve at 359.9. 359.9 is the refined Pi.

----
We can do this with another "Pi"
3.169 x 114 =361.266
1.266 divided by 114 = 0.011105263157894736
3.169 - 0.011105263157894736 = 3.157894736842105264
3.157894736842105264
Zu Chongzhi (429–501) 355 at 113 so close. 360 at 114. I am guessing he was using a Azimuth-al-Radial Pendulum.
Now lets think about this:
355 x 113 = 40115
40115 x 3 = 120345
40115 divided by 120345 =0.33 - pi
Take note the Flaw of the Calculator.
What your doing is this.
3.14 x 114 = 357.96 r 2.04
2.04 divided by 114 = 0.01789473684
3.14 +0.01789473684 =3.15789473684
if your above 360 you subtract, if you below you add
So lets go with
3.14188888888 x 114 = 358.175333332 - Not 360
3.149 x 114 = 358.986
3.15 = 359.1
3.157 = 359.898
we continue till we achieve 360 at 3.15789473684210526
or we can do this:
3.14188888888 x 114 = 358.175333332
360-359.17533333232 = 1.82466666768 1.82466666768 divided by 114 =0.01600584796
0.01600584796 + 3.141888888 = 3.15789473684
360 divided by 3.14159265359 = 114.591559026
3.1415926536 (1digit higher already) x 114 = 358.14156251
3.141592654 (another digit higher) x 114 = 358.141562556
3.14159266 (another) x 114 = 358.14156324
3.1415929 (again) x 114 = 358.14156666
3.1415927 (again) x 114 = 358.1415678
3.1416 (again) x 114 = 358.1424
you will end up at 3.15789473684
1 divided by .360 =2.77777777778 x 114 = 316.666666667
316.666666667 x 360 =11400 -x114 = 36100
3.16666666667 x 360 = 1140 - x114 = 361
.316666666667 x 360 = 114 - x114 = 36.1
So according to this
.316666666667 is "Pi"
but when you reverse it we have a problem again.
3.16666666667 x114 = 361
You must be able to go forward and backward.
360 divided by 114 = 3.15789473684210526
3.15789473684210526 x 114 = 360
You can solve with process of elimination and using the common denominator of 114 which is extracted from 360.
Be warned the multiplication flux requires you to be exact, Before landing on the magic number I hit 360.003 but it bounced over 360 regardless. The progressive formula's used to attempt to logically quantify this number lack understanding of volume. Imagine the space between the particles is so vast it's like milky way and us. Where you start is exactly where you will end up because you do not start at 1-2 you start at 0-1 and imagine the 0 is the 360 so if you walked symmetrically each step every step will land in the exact same spot.
Even though the space between the particles is like the distance between us and the milky way. Where you start is where you end.
You must realize also that the sphere has no flat spot. This does not mean it has no connection, this means that the connection is perfect and the object maintains the exact same radial curve at 360 degrees.
Below you can see how this works using this graph I made. How the numbers are rationalized as divisions of 2 and 4 and 4 and 8. While the radial curve is a digit that is a 1 the sphere is a even number so to solve you triangulate and the result is a even curve that sits at 360 perfectly.

Think of it more like this: 315789473684210526 is a perfect curve that makes a perfect sphere.
When you enter 3.141 x 81 you will get 254.421
When you enter 3.157 x 81 you will get 255.717
When you segment into complete divisional numbers you can get the radial curve. The accuracy of that curve depends on where you being from. This is expanded when you apply it to a object by exponential amounts. To get it perfect you it is best to triangulate from the sum of 360 itself.
This is because of divisional accuracy as shown in the graph above.
3.15 x 114 =359.1
Now we take 1.9 away from 359.1 and add to remainder
1.9 divided 360 =.005277777777777778
3.15 -.016666666666666666 = 3.144722222222222
3.144722222222222 x 114 = 358.49833333333333
360 - 358.49833333333333 = 1.5016666666666652 1.5016666666666652 divided by 360 = 0.004171296296292
3.144722222222222 - 0.004171296296292 = 3.140550925926926 x 114 =358.0228055555556 so lets keep going 360-358.0228055555556 = 1.9771944444444216
take note the numbers are going down here as we subtract.
359.1
358.49833333333333
358.0228055555556
Taking us further from 360 while our remainder increases
.9
1.5016666666666652
1.9771944444444216
lets add it to our Pi and see what happens.
0.004171296296292 + 3.144722222222222 =3.148893518518514
3.148893518518514 x 114 = 358.9738611111106
360 - 358.9738611111106 = 1.0261388888894203
1.0261388888894203 divided by 360 = 0.00285038582470612
0.00285038582470612 + 3.148893518518514 =
3.1517439043209845 x 114 = 359.298805093259226
360 - 359.298805093259226 = 0.701149067407755
0.701149067407755 divided by 114 = 0.0061504304158575
0.0061504304158575 +3.1517439043209845
3.1578943347368402 (<- close) x 114 = 359.9999541599998
360 - 359.9999541599998 = 0.00004584000021168322
= 3.1578943347368402 x 114 =359.9999541599998 =0.00004594000021168322
Here your Calculator shuts down.
3.15789473684 - 3.1578943347368402 =.0000004021031598
Not only does it round up but it also will not display the integers beyond its limit. Which is probably why it rounds up. You solve through triangulation.